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1.  Introduction

Viruses are captivating nanoscale biological entities that in 
their simplest form are made by two essential components: 
a protein shell, also known as a capsid, and RNA or DNA as 
genetic material [1]. Despite this apparent simplicity, viruses 
are extremely efficient nanomachines capable of replicating 
with unparalleled efficiency in a wide variety of hosts and con-
ditions. The most important role of the capsid is to protect the 
genetic material of the virus. During the extracellular phase 

viruses face large variations in environmental conditions that 
could induce extreme changes in temperature, pH, osmotic 
shocks related to a sudden alteration of salt concentration, or 
dehydration. In addition, the capsid of many double-stranded 
DNA viruses has to withstand up to tens of atmospheres of 
pressure built up during the packaging of the viral genome 
at high densities [2–7]. Moreover, extremophile viruses can 
live in extreme conditions of salinity, radiation or temperature 
[8]. Thus, it is very important that the capsid keeps its integ-
rity under environmental changes and survives mechanical 
stresses during its life cycle. As a consequence viruses have 
developed amazing mechanical properties. Notable examples 
are bacteriophage φ29 that is capable of withstanding about 
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50 atms of pressure inside [5, 7, 9]; or cowpea chlorotic mottle 
virus (CCMV) that tolerates broad pH ranges and deforma-
tions of more than 30% without breaking [10, 11].

In recent years, there has been a lot of interest in charac-
terizing the mechanical properties of individual viruses [12]. 
These studies have been possible by the development and 
application of different single-molecule experimental tech-
niques. In particular, optical tweezers have been crucial in 
measuring the forces associated to the packing of the genome 
[7]. But, arguably, the most important and popular tool has 
been the application of the atomic force microscope (AFM) 
to obtain the mechanical resistance and topography of indi-
vidual capsids [12–17]. AFM nanoindentation experiments 
have determined different mechanical properties of viruses, 
including effective Young’s modulus [13], breaking patterns 
and forces [18], fatigue [19] or even internal pressures [9].

AFM experiments are a very powerful tool to access mechan-
ical information of viral capsids, but it is often very hard to get 
a good interpretation of the results and to relate this informa-
tion to the biological characteristics of viruses. In this context, 
theoretical modeling and simulations are required to achieve a 
better understanding of experimental AFM results [20].

The goal of this article is precisely to introduce a ‘Virtual 
AFM’, i.e. a coarse-grained simulation mimicking the 
standard setup and experimental protocol of AFM nanoinden-
tation experiments. Instead of placing the focus on the finest 
structural details of the nanoindentation of a specific virus, the 
aim is to provide a highly coarse-grained description, allowing 
to simulate large viruses at realistic timescales and with the 
advantage of being able to link the mechanical behavior to 
the essential physical ingredients of the interaction between 
capsid’s structural units. With the VAFM one can get a better 
understanding of the mechanical response of viral capsids and 
how it will be influenced by changes in structure, loading or 
environmental conditions.

This article is organized as follows. Section 2 briefly sum-
marizes the basics of AFM nanoindentation experiments in 
the study of viral capsids. Section  3 will be devoted to the 
description and implementation of the ‘Virtual AFM’, a 
Brownian Dynamics (BD) simulation mimicking the typical 
set up of single virus nanoindentation experiments. A detailed 
explanation of the main parameters of the interactions in the 
coarse-grained model and how they could be obtained from 
experiments and full-atom simulations is also provided. Next, 
we will show how the elastic response of viruses depends on 
different physical parameters of their effective interactions, 
including the bending rigidity of the shell, the adsorption to 
the substrate, the radius of the AFM tip or the capsid shape. 
Finally, our main findings are summarized in the conclusions.

2.  AFM on viruses

The application of AFM has become a revolution in the study of 
the mechanical properties of viruses [15]. The AFM is a high-
resolution imaging technique that allows an exquisite control of 
the height, position, and force in the study of individual viruses. 
With it, it is possible to acquire nanometric-resolution images, 

and also to perform a physical characterization of the rigidity of 
the sample. AFM can also be used in liquids, thus facilitating 
the study of biological samples in their natural environment.

AFM nanoindentation experiments are providing impor-
tant information about the mechanical properties of viruses 
[12, 14, 16]. The use of this method on different viruses has 
revealed that they are mechanically robust structures with 
interesting elastic properties. As an example, bacteriophages 
have been found to have high effective Young’s modulus, 
comparable to that of hard plastics [13]. The AFM is also 
being very helpful in order to infer the influence of the genetic 
material or other types of cargo [21] on the mechanical resist
ance and stability of capsids. Nanoindentation experiments 
comparing empty and full capsids have been performed on 
various viruses such as CCMV [10], Minute Virus of Mice 
[22], phages λ [23] and φ29 [9], adenovirus [24] or herpes 
simplex virus [25, 26]. In addition, the mechanical changes 
induced by the maturation process in viruses such as moloney 
murine leukemia virus [27], human immunodeficiency virus 
[28], HK97 [29] or T7 [30] have also been studied.

The basic set up of an AFM consists of a flat horizontal 
surface, that supports the sample and a small tip at the end of a 
cantilever which interacts with the sample. The position of the 
tip is controlled using a piezolectric device that can move the 
sample in all three directions by an applied electric voltage. In 
contact operation mode, when the tip touches the sample the 
cantilever suffers a deflection that is measured by a laser and 
a photodiode. From the deflection of the cantilever, one can 
get an accurate topographic image of the sample with nanom-
eter resolution [15, 17]. The deflection can also be translated 
into a force with a resolution of about 10 pN, using the elastic 
constant of the cantilever, which can be determined using, for 
instance, Sader’s method [31].

In a typical nanoindentation experiment, the sample is 
immobilized on a flat hard substrate. The cantilever is then 
lowered progressively, recording the force and deflection as a 
function of the vertical position of the tip [15]. A conventional 
experimental force curve as a function of the indentation 
is plotted in figure 1. For small indentations a linear force-
response can be observed allowing the determination of the 
particle’s effective spring constant from the slope. For larger 
indentations one can observe a non-linear behavior followed 
by the presence of strong discontinuities in the force-indenta-
tion curve that are often attributed to the mechanical failure 
of the capsid. The maximum indentation is the value of the 
indentation at which the first sudden drop in the force occurs, 
and the corresponding value of the force is identified with the  
‘breaking force’. These three parameters, namely the 
effective spring constant, the maximum indentation and  
the breaking force, are the standard output of nanoindenta-
tion experiments. But the challenge is to translate these simple 
measures into meaningful intrinsic mechanical properties and 
to identify what are the actual processes responsible for the 
different features observed in the force-indentation curves.

The mechanical information obtained by AFM experiments 
has traditionally been interpreted in the framework of con-
tinuum elasticity theory [32]. In the thin shell approximation 
[13, 17, 33], the elastic response of viral capsids depends on 
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the competition between stretching and bending deforma-
tions and on the strength of the applied force (or depth of the 
applied indentation). One can distinguish two deformation 
regimes, corresponding to small and large indentation forces.

For small deformations the behavior of the force versus 
indentation is linear and reversible. In these conditions, the 
mechanical behavior of the cantilever can be approximated as 
an ideal spring whose elasticity is described by Hooke’s law: 
F  =  −kcx, where F is the restoring force, which is equal to the 
force of tip–sample interaction, kc is the spring constant of the 
cantilever, and x is its deflection. The deformable sample can 
be considered like a spring in series with the cantilever. Using 
this approximation the effective elastic constant of the capsid 

is given by kcap = kc
Sg

Sv−Sg
, where Sg (nm V−1) is the slope of 

the cantilever deflection on the non-deformable substrate and 
Sv (nm V−1) the slope of the cantilever deflection on the virus. 
Thus, in the small deformations regime, kcap is calculated from 
a linear fit of the force versus indentation curve. The spring 
constant of the virus kcap is related to the effective 3D Young’s 
modulus E as [17, 34]:

kcap =
2√

3(1 − µ2)

Eh2

R
,� (1)

where μ is the Poisson’s ratio, R is the radius of the capsid, 
and h its thickness. The previous relation is exact for a thin 
spherical shell indented by a point force. For a thick shell, 

the same formula is used, replacing the prefactor 2√
3(1−µ2)

 

by an effective coefficient which in most cases is close to 1. 
Alternatively, the spring constant can be rewritten in terms of 
the 2D Young’s modulus Y  =  Eh and the bending rigidity κ 
as [17, 35]

kcap ∼
√
κY
R

.� (2)

For indentations δ larger than the shell thickness, inverse 
buckling occurs [35]. In this regime, the force is no longer 
linear, but rather goes as F ≈

√
δ. Inverse buckling is expected 

to happen when δ > h and when the force exceeds a critical 
value Finv ≈ κ/R. Applying even larger deformations eventu-
ally causes irreversible changes in the shell structure associ-
ated to bond ruptures.

Some of the approximations involved in thin shell theory 
can be removed by the use of finite elements (FE) simula-
tions to solve the complex 3D continuum elasticity equations  
[10, 13, 36]. Using FE, it has been possible to analyze the 
effect of the thickness of the capsid, to extract phenomeno-
logically the effective Young’s modulus, and even to account 
for the effect of inhomogeneities using refined meshes con-
structed from atomic maps of viruses [37].

The continuum mechanics description works well as a 
first approximation and has provided very useful information 
about the elastic properties of viruses. However, a continuum 
description cannot capture the discrete nature of subunits 
forming the capsid, which is very important for a correct 
mechanical description of viruses [38]. As an example, AFM 
experiments on bacteriophage T7 show an anisotropic stiff-
ness in its mechanical response [30] that cannot be described 
with a continuum theory. Therefore, accounting for the dis-
crete and inhomogeneous nature of the capsid is crucial to 
properly understand its stability and mechanical response. 

Different types of simulations, accounting for the discrete-
ness of the capsid at diverse resolution levels, have been imple-
mented in the literature. In particular, elastic network models 
have been used to study the buckling and deformation of 
viruses [35, 39, 40–45], but cannot easily account for breaking 
events. On the opposite extreme, full-atom or high-resolution, 
structure-based coarse-grained simulations of nanoindentation 
experiments are computationally very costly, specially when 
applied to large viruses [46–52]. That is the reason why we 
developed our ‘Virtual AFM’ described in the next section. 
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Figure 1.  (a) A typical force versus indentation curve obtained in a real AFM experiment for a bacteriophage T7 virus prohead indented 
along the 3-fold direction. The initial linear response ends abruptly by a sudden drop, in this case due to the fracture of the shell. Data 
courtesy of de Pablo’s group. (b) A similar curve obtained in our simulations for a T  =  7 shell. In the simulation, the sudden drop in the 
force is due to the breaking of the upper part of the virus. After the breaking event, the remaining part of the shell partially recovers its 
height, offering resistance to further indentation, as indicated by the subsequent increase in the force.
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Using a high level of coarse-graining one can reach longer 
timescales and perform efficient simulations while retaining 
the essential ingredients of the interaction between viral capsid 
subunits. Our model can be considered as an intermediate 
approach between continuum descriptions, that ignore the dis-
crete nature of viral capsid proteins and cannot describe virus 
breaking, and structure-based coarse-grained simulations. Our 
goal is to provide a physical interpretation of viral mechanics 
at a discrete level, rather than aiming at capturing all the struc-
tural details involved in the deformation of a specific virus. 
With the VAFM one can visualize the dynamics of the capsid 
during the nanoindentation and correlate the features observed 
in the force-indentation curves with actual physical changes 
in the capsid. The model can be used to study the mechanical 
properties of viruses of arbitrarily large T-number and viruses 
whose structure is not known with atomic resolution, thus 
being potentially very useful to get information on the stability 
and resistance of any virus.

3.  Virtual AFM

In order to reproduce nanoindentation experiments, we wanted 
to implement a simulation mimicking the typical AFM setup. 
Since we are interested in the response of the viral capsid and 
the dynamics of capsomers during the indentation process, we 
decided to use an algorithm based on BD simulations together 
with a coarse-grained model of a capsid that succesfully repro-
duces the structure and assembly of the lowest Caspar and 
Klug structures, as described in [53]. The model was specifi-
cally designed to study self-assembly, where a large number 
of capsomers and long time scales are required. At those con-
ditions, the implementation of high-resolution coarse-grained 
models will be computationally very costly.

3.1.  Coarse-grained model of a viral capsid

Viral self-assembly is a complicated and virus-specific pro-
cess, which however shows some universal features. The most 

remarkable one is that, despite the differences in shape, size, 
sequence and conformation of coat proteins among different 
viruses, they end up adopting a common set of architectures. 
That suggests the existence of common traits in the effective 
interactions that underlay and justify the ubiquitous prevalence 
of icosahedral structures [54]. In icosahedral viruses, the viral 
coat proteins are distributed in morphological units, called cap-
somers, made of five (‘pentamers’) or six (‘hexamers’) proteins. 
Although the interactions between individual proteins are pre-
sumably very complex, the effective capsomer-capsomer interac-
tions are expected to be simpler and more isotropic. Accordingly, 
our model [53] is coarse-grained at the level of capsomers, i.e. 
pentamers and hexamers, which are the basic structural units of a 
viral shell. These capsomers are represented as effective spheres 
of two different diameters: σh and σp, reflecting the fact that hex-
amers and pentamers are made of a different number of proteins 
(six and five, respectively), see figure 2(a). The goal is thus not to 
provide structurally-detailed information of each individual coat 
protein but rather to capture the essential physical traits of the 
effective interactions between capsid’s morphological units.

Three are the essential ingredients of the interactions 
required for a successful model of a capsid at this high level 
of coarse-graining. First, a short range repulsion is needed 
to mimic steric effects and prevent capsomer overlapping. 
Second, some kind of binding attraction is vital to keep the 
integrity of the capsid. Third, an orientational-dependent 
interaction is necessary to account for the anisotropy of cap-
somers and to form stable shell-structures rather than compact 
clusters. Accordingly, the interaction between capsomers is 
modeled using three contributions: a Mie-like, an angular, and 
a torsion potential, V = VLJ · Va · Vtor. The Mie-like potential 
describes the binding and the excluded volume interaction 
between a pair of capsomers in terms of their relative distance, 
rij. The expression used was

VLJ(rij) = εij
n

m − n

[(σij

r

)m
− m

n

(σij

r

)n]
,� (3)

where σij is the equilibrium distance corresponding to the 
minimum of the potential, r is the distance between capsomer 

Figure 2.  (a) Schematic representation of the coarse-grained modeling applied to the particular example of Turnip yellow mosaic virus 
(TMYV), a T  =  3 virus. The left image is a surface view of the real capsid taken from VIPERdb [64]. Clusters of five (pentamers) or six 
(hexamers) coat proteins are replaced in the coarse-grained model (right figure) by effective spheres of different diameter. (b) Representation 
of a coarse-grained hexamer (green) and pentamer (red) used in the model, indicating the distance between their centers rij (orange), the 
orientation vectors �Ωi  (violet) and �Ωj  (blue) and the angles used in the interaction potential. A white sphere is overlapped on each capsomer 
just for representation purpuses, to indicate its orientation.
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centers, εij is the binding energy between capsomers, and m 
and n represent the power of the repulsive and attractive inter-
action terms, respectively, which set the range of the interac-
tion potential.

The angular term of the potential is given by

Va(rij,Ωi,Ωj) = exp

(
−
(θij − ν)2

2α2

)
exp

(
−
(θji − ν)2

2α2

)
,

� (4)
where θij is the angle between the vector Ωi , describing the 
spatial orientation of the capsomer, and the vector rij (see 
figure 2(b)). The parameter ν is the preferred angle of interac-
tion between proteins of different capsomers, which ultimately 
defines the size of the shell, and the parameter α controls the 
local bending stiffness, i.e. the energy cost required to bend 
two capsomers out of their preferred angle of interaction.

Finally, the last contribution to the potential is a torsion 
term included to account for the differences between the inner 
and outer surface of coat proteins, and to favor the formation 
of closed shells instead of connected surfaces with different 
concavity. This contribution is given by

Vtor(Ωi,Ωj) = exp

(
−kt

(1 − cos ξ)

2

)
,� (5)

where kt is the torsion constant and ξ is the angle between the 
planes defined by vector rij and both orientation vectors (see 
figure 2(b)).

The model has been implemented in a BD simulation code 
using reduced units and a simple stochastic Euler’s integration 
algorithm. In the standard version of this algorithm, the posi-
tion of a particle at a time t + dt  is given by

ri(t + dt) = ri(t) +
Fi(t)dt

η
+
√

2Dtξ,� (6)

where η is the friction coefficient, D is the diffusion coef-
ficient, Fi(t) is the force on particle i, and ξ is a Gausssian 
distributed random number with zero mean and variance 1. 
For simplicity, we will use reduced units, normalizing all 
variables in terms of the diameter of hexamers σ ≡ σh, the 
diffusion coefficient of hexamers D, and the binding energy 
between hexamers ε0 ≡ εhh. In these reduced units, the char-
acteristic time is τ = σ2/D, and using Stokes–Einstein equa-

tion D = kBT
η  to eliminate η, Euler’s algorithm can be written 

in a simple way. More specifically, at time t + dt , the positions 
r(t) and angles (θ(t) and φ(t)) for each capsomer are given by

r(t + dt) = r(t) +
dt
T

Fr(r) +
√

2dtξr,� (7)

θ(t + dt) = θ(t) +
dt
2T

Fθ(t) +
√

dtξθ,� (8)

φ(t + dt) = φ(t) +
dt
2T

Fφ(t) +
√

dtξφ,� (9)

where T is the temperature in reduced units, dt is the time 
step (typically dt = 10−5), ξr , ξθ, and ξφ are Gaussian distrib-
uted random numbers with zero mean a variance 1. The trans-
lational and orientational forces Fr(t), Fθ(t) and Fφ(t) are 

calculated from the interaction potential between capsomers. 
Further details and the explicit expressions of the forces can 
be found in [55]. It is worth emphasizing that the model can 
reproduce successfully the structure and assembly of the 
lowest T-number viral shells without requiring any additional 
constraints, templates or local rules.

Finally, a nice characteristic of the model is that the inter-
action parameters can be connected to elastic modulus in the 
continuum limit. In particular, the 2D Young’s modulus is 
approximately given by [53]

Y =
2 nm√

3
ε0

σ2 ,� (10)

and the bending rigidity is

κ =
3
√

3
8

ε0

α2 .� (11)

In the continuum limit, the elastic behavior of a thin shell 
depends ultimately on a single non-dimensional parameter, 

the Föppl–von Kármán (FvK) number γ = YR2

κ , which is the 
ratio of the stretching and bending energies [43, 44, 56–59]. 
In terms of the parameters of our model, the FvK number 
becomes simply

γ =
16 nm

9
α2

(
R
σ

)2

.� (12)

3.2.  Evaluation of model parameters

Another nice feature of the present coarse-grained model is 
that it only depends on very few parameters which have a 
clear and meaningful physical interpretation. In particular, the 
diameters σh  and σp  represent the effective size of an hexamer 
and a pentamer, respectively. They can be determined as the 
diameter of a sphere circumscribing the actual hexameric and 
pentameric capsomer of a real virus of interest (see figures 3(a) 
and (b)). The remaining parameters entering into the different 
interaction potential terms, can be determined for a specific 
virus either from experiments or atomistic simulations. More 
specifically, atomistic umbrella sampling molecular dynamics 
simulations can be used to the determine the potential of mean 
force (PMF) between two hexamers or pentamers [60]. Using 
the distance between the center of masses of two hexamers 
as reaction coordinate, it is possible to evaluate the atomistic 
PMF as a function of their separation. This can then be fitted 
to the Mie expression, equation (3), obtaining the values of m 
and n, controlling the range of the interaction and εij, repre-
senting the minimum of the potential. This procedure has been 
implemented, for instance, to obtain the effective interaction 
potential between two CcmK2 hexamers in studies of car-
boxysome assembly [60]. Alternatively, the effective binding 
energy between capsomers can be obtained from assembly or 
calorimetry experiments [61] or estimated by calculating the 
association energies in the atomistic equilibrium structure, 
considering the sum of energies due to desolvation, electro-
static, and van der Waals interactions between all atoms of the 
interacting subunits [62].
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The parameter ν describes the optimal angle of interac-
tion between two capsomers. It can be approximated by the 
actual angle between hexamers in the native structure (see 
figure 3(c)) or even estimated for each T-number shell from 
a simple geometrical relation [53] cos(ν) = −σ/(2R), where 
R is the radius of the capsid. Alternatively, it could be evalu-
ated from the PMF in a full-atom simulation of two capsomers 
in contact for different relative orientations. The orientation 
corresponding to the minimum of the PMF will directly deter-
mine the value of ν. These simulations will be also useful 
to evaluate the local bending rigidity α, accounting for the 
energy required to bend the contact between two capsomers 
out of the preferential angle of interaction. The same simula-
tions can also be used to determine the parameter kt of the tor-
sion potential, by getting the PMF of two hexamers in contact 
using the torsion angle as reaction coordinate.

Hence, by following this protocol one could get an accu-
rate coarse-grained interaction potential between capsomers. 
With it, one could provide a nearly quantitatively accurate 
description of nanoindentation experiments of a specific virus 
of interest. The VAFM thus represents a sort of multiscale 
approach to simulate the mechanical properties of viruses, 
where the precise values of the parameters of the effective 
interactions can be determined from all atom simulations 
involving just two capsomers, and the global response of the 
capsid can be simulated at larger length and time scales using 
a very simple and efficient coarse-grained model. However, 
instead of pursuing this route for a particular virus, our aim in 
this work is to perform a more physical study and to explore 

how the mechanical response and some of the peculiar fea-
tures observed in AFM nanoindentation experiments depend 
on the global physical parameters and energetic contributions 
describing the effective interactions.

To that end, we will focus on a specific T-number shell, 
choosing reasonable values of the parameters and working 
in reduced units (instead of real units) so that the results can 
be applied to a wide class of viruses. More specifically, we 
will study a generic T  =  7 shell (representative, for instance, 
of bacteriophage λ, P22 or T7), fixing a reasonable value of 
the binding energy, namely εhh = 20kBT , which is a charac-
teristic value of the association energies between capsomers 
obtained from atomic structures in [62]. For this choice, the 
reduced temperature becomes T  =  0.05. All our simulations 
have been performed with m  =  12 and n  =  6, i.e. the standard 
parameters of a Lennard-Jones potential, since those values 
have been found to reproduce efficiently the assembly of the 
smallest Caspar and Klug structures [53]. For a T  =  7 shell, 
the appropriate preferred angle between capsomers can be 
approximated by ν = 1.796, corresponding to the lowest 
energy structure in [53]. We have set a value for the torsion 
constant of kt = 1.5, but its precise value does not affect the 
mechanical response of the shell significantly.

3.3.  Simulation set-up

The VAFM is a simulation that emulates the nanoindentation 
process of virus by an AFM, i.e. it simulates the lowering of 
a spherical tip attached to a microcantilever which exerts a 
force on a sample, in this case, an empty viral nanocage. The 
simulation setup is shown in figure 4. In the simulations we 
have added a rigid surface at a position z  =  0, representing the 

Figure 3.  Surface representation of the atomic structure of a 
pentamer (a) and an hexamer (b) of TMYV. The size of the 
corresponding coarse-grained pentamer, σp , (in red) and hexamer, 
σh , (in green) is determined by the diameter of the sphere 
circumscribing the actual pentamer and hexamer, respectively. 
(c) The parameter ν in the model describes the preferred angle 
of interaction between capsomers and in most cases can be 
approximated by the angle between two neighbor capsomers in 
the native structure. The image (c) shows the value of ν obtained 
from two hexamers in the native structure of TMYV, and (d) is the 
corresponding representation in the coarse-grained model.

Figure 4.  Snapshot of a T  =  7 coarse-grained empty shell indented 
along the 2-fold direction. The blue sphere represents the AFM 
tip. The viral capsid is modeled at the level of capsomers, where 
hexamers and pentamers are represented by green and red spheres, 
respectively. The black rectangle illustrates the hard substrate.
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substrate; the tip of a cantilever at the top, modeled as a sphere 
which can only move in the z direction, and a preformed 
capsid between them mimicking the experimental situation. 
The capsomers, depicted by the red and green spheres in 
figure 4, interact pairwise through the coarse-grained poten-
tial described earlier. They also interact with the tip and with 
the substrate.

The interaction between capsomers and the sphere of 
radius Rt representing the AFM tip (depicted in figure 4 by 
a blue sphere) is modeled by the following purely repulsive 
harmonic potential

Vc =
1
2

krep (ric − (Rt + σi/2))2 if ric < Rt + σi/2,� (13)

where krep is an effective repulsive spring constant, ric the dis-
tance between the center of the cantilever and capsomer i, and 
σi is σp or σh  for a pentamer or a hexamer, respectively.

To mimic the deflection of the cantilever caused by the 
interaction with the capsid, its z-position is updated using the 
following overdamped Euler equation

zc = dt
Dc

kBT
(Fc − kc(zc − h)) + ξ

√
2Dcdt,� (14)

where dt = 10−5 is the time step used in the simulations, 
Fc = −

∑
i krep (ric − (Rt + σ/2)) is the total force on the 

cantilever due to the interaction with all capsomers, kc is the 
spring constant of the cantilever, Dc is its diffusion coefficient, 
and ξ is a Gaussian noise with zero mean and variance 1.

Finally, the substrate (figure 4, black surface) is modelled 
as a flat rigid surface. To account for potential effects of 
adsorption with the substrate, as often occurs in experiments, 
a binding energy of adsorption Eads is considered. This adsorp-
tion contribution is described by the interaction potential

Vsub(r) = Eads

[(
σi/2
|z|

)12

− 2
(
σi/2
|z|

)6
]

,� (15)

where σi/2 is the radius of capsomer i and |z| is the distance 
between capsomer i and the substrate.

In the initial configuration, the empty capsid is placed 
slightly above the surface and the positions and orienta-
tions of all capsomers correspond to the optimal values for 
the parameters and T-number used. To prevent rotation and 
sliding in the simulations, the position of some capsomers is 
fixed, depending on the orientation of the virus. Specifically, 
for indentations along the 5-fold symmetry we have fixed four 
pentamers: the two pentamers located on the z-axis can only 
move in the z direction and another two pentamers having ini-
tially y  =  0, cannot move in the y-direction. For indentations 
along the 3-fold, two pentamers have x, y fixed and can only 
move along z; and another two pentamers are fixed at x  =  0.

In all simulations some parameters have been fixed, unless 
stated otherwise: the radius of the tip was set to Rt = 3σ and 
the spring constant of the cantilever to kc = 40ε0/σ

2. For a 
typical capsomer size of σ ∼ 10 nm and binding interaction 
ε0 ∼ 20kBT , this would correspond to a tip radius of Rt = 30 
nm and cantilever spring constant kc ∼ 0.03 N m−1, which are 
experimentally reasonable values. Using the Stokes–Einstein 

equation  to estimate the diffusion coefficient of this typical 
capsomer size, we get a a characteristic time τ = σ2/D ∼ 2.3 
μs. The strength of the tip-capsomer repulsion was set to 
krep = 80ε0/σ

2, but the specific value of this parameter is 
not relevant, since the same results were reproduced for 
krep = 160ε0/σ

2.
As in experiments, the simulation procedure involves the 

progressive lowering of the tip. In our simulations, the z posi-
tion of the cantilever is initially set to a value above the shell 
and it is lowered at steps of 0.005σ . We lower the tip typically 
after 106 steps, measuring the average force on the cantilever 
sampled every 100 steps. The simulation runs for a total of 
5 × 108 steps corresponding to a total indentation of 2.5σ . For 
a typical capsomer size of σ ∼ 10 nm, the indentation speed 
in real units will correspond to 2 μm s−1, which will be a rela-
tively fast indentation. In some simulations, the retraction of 
the tip is also simulated, to check the reversibility, using the 
same number of steps and height increments.

With the ‘Virtual AFM’ it is possible to study the mechan-
ical properties of different capsid structures. Our high-level 
of coarse-graining makes this model particularly suitable to 
analyze the nanoindenation of viruses whose detailed atomic 
structure is not known or of large viruses. As an example, 
figure  5 shows a snapshot of a simulation and a typical 
nanoindentation curve obtained with our VAFM for two large 
viral shells: a T  =  13 shell, resembling the external layer of 
infectious bursal disease virus, and a T  =  25 shell mimicking 
the nanoindentation of adenovirus. To our knowledge, those 
large shells have not being simulated using full-atomistic or 
structure-based coarse-grained simulations, since the number 
of residues involved would make them computationally very 
expensive.

For the sake of simplicity, in this work, we will focus on 
an empty T  =  7 viral shell as a particular example. The T  =  7 
capsid is a chiral structure that can have two different chirali-
ties: leavo and dextro [63]. In our simulations we have used a 
T  =  7 leavo structure, since this chirality seems to be the most 
abundant for T  =  7 viruses of known structure [64]. We have 
also performed simulations for a T  =  7 dextro shell, finding 
no significant differences in the results.

3.4.  Nanoindentation curves

Figure 6 shows three repetitions of a typical nanoindentation 
curve obtained from simulations of a 5-fold oriented T  =  7 
capsid including also the retraction of the tip. As in experi-
ments, from the force F versus z curves we calculate the 
indentation as δ = −zc − F/kc + z0, where zc is the position 
of the cantilever. The indentation curves are also shifted in z 
by a distance z0 in such a way that the tip-sample contact starts 
at δ = 0.

For small indentations, the F versus δ curves show a linear 
and reversible behavior corresponding to elastic response. 
At large indentations the linear regime ends up by an abrupt 
decline of the force, corresponding in this case to the sinking 
of the top pentamer, that gets inside the capsid, leaving a small 
hole behind. A second abrupt drop in the force is observed 
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when the tip breaks the upper part of the capsid generating 
a large hole. This cracking of the capsid is not reversible, 
as shown by the different routes followed by the retraction 
curves of the tip. The final structure after retraction sometimes 
is partially healed as shown in the inset figure of a structure 
missing one pentamer with a small hole and pentamers and 
hexamers reorganized.

Figure 7 shows similar nanoindentation curves obtained 
when a ‘soft’ virus, i.e. one with a relatively low bending stiff-
ness, is indented along its 3-fold axis of symmetry. The indenta-
tion curves show an initial linear regime followed by an increase 
in the slope ended by an abrupt drop in the force which in this 
case is not associated to the breaking of the shell, but rather to 
its flattening on top of the substrate, as will be discussed in more 
detail later on. The critical force and indentation associated with 
the sudden drop of the curves change in different repetitions of 
the same simulation. This is indicative of the stochastic, temper
ature-activated nature of this phenomenon.

It is worth emphasizing that the indentation curves 
obtained using our ‘Virtual AFM’ are remarkably and quali-
tatively nearly identical to the experimental curves measured 
with the real AFM, as illustrated in the comparison between 
figures 1(a) and (b).

4.  Results

As mentioned before, one of the potential uses of the VAFM 
would be to focus on a specific virus of interest and try to 
reproduce quantitatively experimental nanoindentation 
curves by tuning properly the values of the effective inter-
action parameters. Rather than following this approach, we 
have opted in the present work to use the VAFM to analyze in 
global physical terms how the mechanical response of a viral 
capsid measured in a nanoindentation experiment depends on 
the physical characteristics of the interaction. In particular, 
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Figure 5.  Snapshot of (a) a T  =  13 and (b) a T  =  25 empty shell indented with the VAFM. (c) Force versus indentation curves obtained in 
both cases. For the T  =  13 shell, the parameters were ν = 1.796, α = 0.2, Rt = 3, and Eads = 0.1. For the T  =  25 shell, we used ν = 1.695, 
α = 0.3, Rt = 1 and Eads = 0.1.
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we analyze the influence on the mechanical response of dif-
ferent parameters, such as the bending stiffness, related to the 
parameter α, the radius of the tip, the adsorption energy of the 
substrate Eads, and the geometry of the indentation. The results 
are briefly summarized in the following subsections.

4.1.  Influence of the bending stiffness

Figure 8 shows the influence of the bending rigidity on the 
indentation along the 5-fold orientation of a T  =  7 shell with 
one type of capsomer. The bending rigidity κ of the shell is dic-
tated by the parameter α through equation (11). As α increases, 
the bending rigidity decreases and the capsid becomes softer, 
tolerating larger indentations. For α ∈ [0.1, 0.5] the shape of 
the shell is spherical and the effective spring constant, obtained 
from the slope of a linear fit for small indentations, decays as 
kcap ∼

√
κ ∼ 1/α, as predicted by thin-shell theory [17, 35]. 

The sudden drop in the force curves for α = 0.1 and α = 0.2 
corresponds to a breaking event, associated with the opening 

of a hole in the upper part of the capsid. However, for α = 0.3 
the capsid is very soft, and resists large indentations (of up 
to 75% of its radius), until its final collapse into a pancake-
like shell. For α > 0.3, the shell becomes progressively more 
faceted. This faceting is noticeable by an increase in its 5-fold 
height, signalled in the figure by the shifting in the contact 
point towards negative values. For α > 0.6 the shell under-
goes a buckling transition [43], as indicated by the change in 
height. The several drops observed in the measured force are 
due to a progressive faceting or flattening of the shell on top 
of the substrate rather than to an actual breaking event (which 
is unlikely because the structure is very soft).

An important conclusion of this study is that the effec-
tive spring constant measured by AFM is not only deter-
mined by the strength and range of the binding interactions 
(which in this case are kept constant) but also by the 
bending cost to drive the capsomers away from their pre-
ferred angle of interaction. Thus, the Young’s modulus 
is not the only elastic constant determining the effective 
spring constant of a virus. This aspect, qualitatively cap-
tured by equation (2), is often overlooked in the interpreta-
tion of experiments.

4.2.  Influence of the adsorption energy Eads

One recurrent question concerning nanoindentation experi-
ments is the influence of the substrate on the measured 
mechanical properties of viruses. We have analyzed the influ-
ence of the adsorption strength with the substrate on the inden-
tation curves for capsids of different bending rigidity. Figure 9 
shows the results for a relatively rigid shell with α = 0.1. At 
small values of the adsorption energy, Eads < 1, the capsid 
keeps its nominal height and the slope of the indentation 
curves is insensitive to Eads. However the maximum value of 
the indentation before the first drop in the force occurs goes 
down as the adsorption gets stronger. The drop corresponds 
in this case to the flattening of the bottom part of the virus 
induced by the applied force.

Figure 6.  Force versus indentation in the 5-fold orientation for a 
T  =  7 shell with all capsomers having the same size, for a rigid 
shell with α = 0.1, ν = 1.796, kc  =  40, krepul = 80, Eads = 0.1, and 
T  =  0.05.

Figure 7.  Two repetitions of a force versus indentation curve for 
indentation along the 3-fold direction of a relatively soft T  =  7 shell 
with α = 1.0, Eads = 0.1, and all capsomers having the same size.
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Figure 8.  Force versus indentation curve in the 5-fold orientation 
for a T  =  7 structure having all capsomers of the same size, for 
Eads = 0.1 and different values of the parameter α that controls the 
bending rigidity of the shell.
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For 1 < Eads < 4, the bottom pentamer and the five sur-
rounding hexamers are initially adsorbed on the substrate 
leading to a well-defined initial height of the capsid which is 
smaller than the nominal height (reflected in figure 9 by a shift 
of the contact point between the tip and the sample).

At very large adsorptions, Eads > 4, the strong adsorp-
tion eventually flattens and breaks the bottom part of the 
shell, which stands on the substrate by an adsorbed ring of 
hexamers, exhibiting a well defined reduced height. As Eads 
further increases, the height of the supported dome gets down 
at discrete steps (see the dark green curve in figure  9 for 
Eads = 10), corresponding to different number of adsorbed 
capsomers at the adsorption rim. Remarkably, the strongly 
adsorbed shell which has a broken bottom still exhibits almost 
the same spring constant as the intact shell.

For α = 0.3, corresponding to softer shells with smaller 
bending rigidity, there is a wide variability of adsorption 
heights, instead of the discrete set observed for α = 0.1. 
This behavior has been recently reported experimentally and 
used to estimate the bending rigidity of Brome mosaic virus 
[65]. If the adsorption energy is very weak, the indentation 
curve shows a smaller slope and an inflection or steps in the 

middle due to the progressive flattening of the bottom part 
or the lateral faces induced by the force. As Eads increases, 
the shell shows different apparent heights, corresponding 
to different levels of adsorption, but the same initial spring 
constant. For Eads > 4, the shell is strongly adsorbed on the 
substrate, leading to a partial reorganization of the capsomers 
and a higher spring constant. Remarkably, despite the strong 
adsorption, no breaking of the bottom part of the shell occurs 
even at Eads = 10.

To summarize the effects of the substrate, the slope is 
nearly the same in all curves, showing that reasonable adsorp-
tion with the substrate has no significant influence on the 
stiffness measured in the AFM [65]. However, the apparent 
heights, breaking forces and critical indentations depend on 
the adsorption strength and typically get smaller as the adsorp-
tion gets larger.

4.3.  Influence of the tip radius

Another interesting aspect to explore is the potential influence 
of the tip radius on the nanoindentation curves. Figure  10 
shows the curves obtained using different tip radius for 
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Figure 9.  Force versus indentation curves for indentations along 
the 5-fold direction of a T  =  7 structure using all capsomers of the 
same size for different values of the adsorption energy Eads for (a) a 
rigid shell with α = 0.1 and (b) a softer shell with α = 0.3.
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Figure 10.  Force versus indentation curve for a T  =  7 shell using 
all capsomers of the same size for Eads = 1.0 and different tip 
radius Rt indented along (a) the 5-fold direction and (b) the 3-fold 
direction.
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nanoindentations along the 5-fold and 3-fold directions. 
Remarkably, for indentations along the 5-fold axis (see 
figure 10(a)) the well defined contact of the tip with the top 
pentamer makes that all curves coincide having the same 
slope. The slope only changes for large indentations for 
Rt > 5, when the tip radius is large enough to press on more 
than one capsomer at a time. Contrarily, for indentations along 
the 3-fold axis of symmetry (see figure 10(b)), the tip is placed 
in the space between three hexamers, and the contact height 
depends on the tip size, as indicated by the shift of initial con-
tact points. In addition, the slopes are different and increase 
continuously with the tip radius up to converging to a con-
stant value for very large, essentially flat, tips. Therefore, the 
results suggest that the radius of the tip leads to changes in  
the measured height and spring constant whenever it permits 
the contact with a larger area of the capsid.

4.4.  Buckling and breaking of viral capsid

One of the most representative characteristics of both exper
imental and simulated indentation curves are abrupt drops in 
the force, that occur after the initial linear regime. These force 
drops have been traditionally attributed to capsid breaking, 
see figure 1(a). However, in the simulations we see that many 
different physical phenomena can happen with the same sig-
nature corresponding to a drop in the force. The advantage of 
the simulations is that one can correlate the observed drops 
in the force with snapshots obtained from the simulations. In 
that way, we have observed that sudden drops in the force cor-
respond, very often in an indistinguishable way, to breaking, 
buckling, rotation and/or sliding. Rotation and sliding are the 
most common cause of sudden drops in the force when the 
capsid is not properly immobilized on the substrate. When 
rotation and sliding are prevented, one could still observe 
breaking, buckling, and reorganization of capsomers, see 
figure 11.

It is important to distinguish between breaking and 
buckling events. Breaking is defined as the disruption of 
the capsid involving rupture of intercapsomer bonds. This 
is typically an irreversible phenomenon that is associated 
with the presence of a crack or hole in the capsid (see 

figure 11(a)), as can be observed also in AFM experiments. 
Breaking is important for the life cycle of virus, since it 
will expose the genome. In nanotechnological applications 
it is indispensable to prevent the unwanted breaking of the 
shell for nanoencapsulation. In a buckling process there is 
a collective change in the position of several capsomers, 
leading to a faceting of the structure, without cracks, see 
figure  11(c). If the indentation stops just after a buckling 
event and the tip is retracted we could observe very often 
that this buckling is reversible.

The goal of this section is to characterize a bit better these 
phenomena and how they depend on different factors such as 
the bending stiffness of the shell. This information is poten-
tially useful to tune the mechanical resistance of a capsid for 
different applications or to promote its disruption.

A good example of different drops in the force under inden-
tation is plotted in figure  12, corresponding to a relatively 
rigid T  =  7 capsid indented along the 5-fold direction. This 
figure shows first a buckling process. The second drop corre-
sponds to the collapse of the bottom pentamer, that adopts the 
same z-position as the hexamers around it and the third drop is 
when the structure actually breaks.

(a) (b) (c)

Figure 11.  Snapshots taken just after a sudden drop in the force curve corresponding to (a) an example of breaking for large indentations 
along the 3-fold direction and two examples of buckling: (b) in the 5-fold direction, due to the entrance of the top pentamer and (c) in the 
3-fold direction, associated to the faceting of the shell.

Figure 12.  Force on the cantilever versus indentation in the 5-fold 
direction for a T  =  7 shell using Ehp = 0.7, showing different 
examples of the mechanism responsible for the sudden drops in the 
force.
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In experimental force curves the force drops are identical 
to the ones observed in the simulations, but the mechanism 
involved in the drop is unknown in most cases. It is usual to 
interpret always a drop in the force as a breaking event. But 
with the help of our simulation one can see that this is not 
always correct, and that the mechanism depends on the elastic 
characteristic of the capsid. When the bending rigidity of the 
shell is large, the shell is more fragile, and breaking events 
are usually the most probable cause of force drops. Buckling 
appears normally for low values of bending stiffness, corre
sponding to soft shells that deform easily, preventing rupture.

4.5.  Polyhedral versus spherical shells

Many viruses, such as bacteriophage T7, change their shape 
from spherical to polyhedral during the maturation of their 
capsids [66]. This change in viral shape is present in the matu-
ration of others viruses such as λ or HK97 [29, 67] and it is 
indispensable to become infective.

The change in shape might alter the mechanical response 
of the shell and could bring some mechanical advantages [38]. 
Previous works on viruses like λ and HK97, which suffer a 
transition between spherical and polyhedral shapes during 
their maturation, show mechanical changes. In particular, λ 
mature virion is more resistant than its prohead [14, 29] or 
HK97 virion is stiffer than its prohead, but the prohead toler-
ates larger deformations [29].

In this section  we compare the mechanical response of 
our model T  =  7 shell in its spherical and polyhedral shapes. 
Using the ‘Virtual AFM’ it is possible to obtain qualitative 
information about the mechanical changes associated to a 
shape change, as the one occurring in viruses upon maturation.

In our study, the change in shape was obtained by changing 
the parameter α related to the bending stiffness [53]. In par
ticular, it was found in [53] that T  =  7 structures with one type 
of subunit exhibit a transition between a spherical shape and 
a polyhedral shape at α ≈ 0.6. The structure become progres-
sively more and more faceted as α is further increased. We 
have chosen the values of α = 0.1 to represent the spherical 
prohead and α = 1.0 for the mature capsid because for this 
value the structure is noticeable faceted, but stable enough to 
sustain AFM indentations.

As an example, we will analyze the case of bacteriophage 
T7 with one type of morphological subunit. A value of the 
interaction between hexamers and pentamers of Ehp = 1.4Ehh 
was chosen to reproduce the relative strength of the hexamer–
hexamer and hexamer–pentamer contact energies reported 
from the atomic structure in [30, 68].

Figure 13 shows the force versus indentation curves 
obtained for the model ‘prohead’ (circles) and ‘mature capsid’ 
(triangles) along the 2-fold, 3-fold and 5-fold symmetry axes. 
In general the spherical shape, for all folds, is stiffer than the 
polyhedral shape, due to its higher bending rigidity.

We have calculated the spring constants for both shapes 
and observed a change in their relative ordering. Specifically, 
we obtained ksp

3 = 55.6, ksp
2 = 48.2, ksp

5 = 34.2 ± 0.5 ε0/σ
2
0.  

Thus, the 3-fold is the stiffest and the 5-fold is the 

softest. In contrast, for the polyhedral shape we obtained  
kico

2 = 11.6, kico
3 = 9.9, kico

5 = 5.8 ± 0.5 ε0/σ
2
0, and thus the 

softest orientation is the 5-fold, and the stiffer is the 2-fold, 
yielding an order of constants k2 > k3 > k5.

The spring constants obtained in experiments are similar 
for the prohead and virion in all symmetry axes, contrarily to 
our simulations. This discrepancy is mainly due to the fact that 
the increase in α required to obtain the polyhedral shape also 
modifies significantly the global stiffness of the shell. Thus, 
in its present form, our model cannot capture realistically the 
complicated changes associated to viral maturation. However, 
the order of the spring constant for our polyhedral shell is the 
same as that found in nanoindentation experiments for the 
mature T7 capsid [30]. Remarkably, the anisotropic elasticity 
obtained from AFM indentation experiments of T7 viral cap-
sids does not follow the anisotropy expected from continuum 
homogenous models [23]. Whereas the experimental results 
show the spring constant of T7 capsids for each icosahedral 
symmetry axis as k5c < k3c < k2c, FEM simulations of the 
stiffness performed in thin shell continuum models estab-
lishes k5 < k2 < k3 [30]. In addition, FE simulations of a thin 
or thick icosahedral shell with the same dimensions as T7 also 
predict an incorrect order of the spring constants. Remarkably, 
the results obtained with our VAFM reproduce the same order 
of the effective spring constants found in the experiments (i.e. 
k5c < k3c < k2c). This suggests that the distinct stiffnesses for 
the different orientations found in the T7 capsid are associated 
to the discrete nature of its structural components and to their 
particular arrangement in the final structure.

5.  Conclusions

In this article we have presented the implementation of a 
‘Virtual AFM’, a BD simulation using a coarse-grained model 
for a viral capsid, designed to mimic the standard setup of 
AFM nanoindentation experiments. This ‘Virtual AFM’ is 
a very useful tool to investigate the mechanical properties 
of viruses, and how they change with the relevant physical 

Figure 13.  Indentation curves for a T  =  7 capsid for kc  =  40, 
krepul = 80, Ehp = 1.4 and σp = σh  for different orientations of a 
spherical capsid with α = 0.1 (circles) and for a polyhedral shell 
with α = 1.0 (triangles).
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parameters. With this tool it is also possible to interpret real 
experiments, providing a simple way to account for the influ-
ence of the discrete structure of the capsid, and obtaining very 
useful information about the physical ingredients involved in 
the mechanical response of viral capsids.

Our ‘Virtual AFM’ has been already useful to interpret experi-
ments performed on bacteriophage T7 [30]. The simulations 
explain the unusual anisotropic stiffness found in these experi-
ments, and reproduce qualitatively the experimental results. 
We have also analyzed how the measured stiffness depends on 
different physical parameters, and on the shape of the virus. In 
particular, we have shown that the measured spring constant not 
only depends on the Young’s modulus of the shell but also on the 
local bending rigidity between subunits. We have also analyzed 
the influence of the adsorption with the substrate on the elastic 
response of a virus. Our findings suggest that the effective spring 
constant of the virus is almost insensitive to the substrate, but the 
virus height, breaking forces and maximum indentations depend 
on the adsorption strength and the bending rigidity of the virus. 
The radius of the AFM tip has a minor influence on the measured 
slope, associated with changes in the contact area. We have also 
shown that sudden drops in the force are not always a signature of 
breaking of the shell. Adsorption, faceting and buckling can also 
lead to indistinguishable force drops, evidencing that caution has 
to be taken in the interpretation of experiments. Finally, we have 
found that viruses show an anisotropic elastic response where the 
relative magnitude of the spring constants not only depend on the 
triangulation number, but also on the shape of the shell. Although 
in this work we have focused on the T  =  7 structure, the Virtual 
AFM can be a useful tool for many future studies of indentation, 
buckling and breaking of different T-number viruses.
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